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Proposal Title: A New Model for the Estimation of Breast Cancer Risk

P.IL: Maryellen L. Giger, Ph.D.

INTRODUCTION:

Cancer risk is the probability that cancer will occurin a given population. Research
on cancer risk seeks to identify populations with a high probability of developing cancer.
The goal of this research is to merge a computerized analysis of mammograms, which
characterizes the breast pattern, with information of a woman's personal and family histories -
into a novel model for use in estimating risk of breast cancer.

The specific aims include 1. Creating a database of mammograms, along with
tabulated clinical information of women at low risk and high risk for breast cancer; 2.
Developing a new model using computer methods for merging mammographic information
with clinical information; and 3. Evaluating the efficacies of the new model compared to
currently used methods of risk assessment. The main hypothesis to be tested is that given a
group of women, the new computerized risk model that merges computerized analyses of
mammograms with clinical information should yield a novel way for identifying those
women at risk for breast cancer. It should be noted that current clinical methods of assessing
risk using the Gail or Claus models (clinical data only) are limited as illustrated by our
preliminary studies, which show only moderate correlation between these two current models
for cumulative risk and 10-year risk.

The new model will include computer-extracted features from digitized
mammograms and clinical information from each woman. The computer-extracted features
will be extracted within regions of digitized mammograms. In general, the breast can be
described by the amount of dense regions (a percent dense) and by the
heterogeneity/homogeneity of the dense portion pattern (texture). In addition, clinical
information such as age and reproductive history contribute to the determination of risk.
Therefore, methods of combining clinical data and multiple mammographic markers into a
single model of risk will be developed for the model.

Potential uses of this innovative model include 1) serving as a means to assess the
cancer risk of women undergoing routine screening mammography and thus, identifying
those women that may require closer scrutiny and 2) serving as a means to monitor the
cancer risk of women undergoing chemoprevention treatments. The research is novel in that
currently there does not exist a reliable means to assess the cancer risk of individual women



using both mammographic and clinical information. In addition, if a woman knew that she
was at an increased risk of breast cancer, it is likely that she would better comply with
screening mammography programs. In the future, a successful model could also be used to
assess the effect of chemoprevention on a women's parenchymal pattern and thereby, overall
risk.

BODY: \
Task 1. Establishment of database (mos. 1-30)

The high-risk database is being collected within the University of Chicago Cancer
Risk Clinic and consists of mammograms, pedigree information, epidemiological data
and related biological specimens from patients with a family history of breast cancer. All
mammograms done since 1990 are being collected for all participants irrespective of their
cancer status. Breast Cancer risk assessment is performed using both Gail and Claus
models and genetic testing whenever possible. A low-risk database is also being
collected from our breast cancer screening program and includes mammograms and
clinical information on women undergoing routine screening mammograms. The low
risk database is being developed to include women who are age-matched to reflect the
age of women in our high risk database. We have collected cases from over 100 patients
and Gail and Claus calculations have been performed. We now have approximately 35
patients with positive BRCA1/BRCA2 gene mutation testing.

The mammograms are converted to digital format by using a laser film scanner
(2048 by 2048 matrix with 12-bit quantization). Such high spatial resolution is necessary
in order to adequately retain the high-frequency texture patterns.

Task 2. Development of risk model including mammographic markers and clinical

information (mos. 3-30)

Computerized analysis of the parenchymal pattern is based on various texture
analysis methods we have developed in our laboratory including Fourier spectra analysis,
histogram analysis, and artificial neural networks. Fourteen features are currently
extracted within the regions of each digitized mammogram. These features are grouped
into (i) features based on the absolute values of the gray levels, (ii) features based on



gray-level histogram analysis, (iii) features based on the Fourier transform, and (iv)
features based on the spatial relationship among gray levels.

The purpose of one of our studies, was to identify computer-extracted,
mammographic parenchymal patterns that are associated with breast cancer risk. We
extracted fourteen features from the central breast region on digitized mammograms to
characterize the mammographic parenchymal patterns of women at different risk levels.
In the study, the features were used t6 characterize mammographic patterns seen in low-
risk women and in women who have breast cancer. Stepwise linear logistic regression
was employed to identify useful features to differentiate between the mammographic
patterns of low-risk women and women with breast cancer. The relationship between
these mammographic patterns and the risk of developing breast cancer was identified
based on the odds ratios associated with these individual features. We also employed two
different approaches to relate these mammographic features to breast cancer risk. In one
approach, the features were used to distinguish mammographic patterns seen in low-risk .
women from those who inherited a mutated form of the BRCAI/BRCAZ gene. In another
approach, the features were related to risk as determined from existing clinical models
(Gail and Claus models). Stepwise linear discriminant analysis was employed to identify
features that were useful in differentiating between "low-risk" women and
BRCAI/BRCA2-mutation carriers. Stepwise linear regression analysis was employed to
identify useful features in predicting the risk as estimated from the Gail and Claus
models. The computer-extracted mammographic features identified from this approach
were similar to those identified from the two previous approaches. The results from this
study show that women who have dense breasts and whose mammographic patterns are
coarse and low in contrast have an increased risk of developing breast cancer. The
consensus of the findings from the three different approaches substantiated the existing
results. (Presented CARS 2000) Our features were further validated this year when we
extended our number of cases from gene-carriers to 30. This resulted in a RSNA 2000
presentation (November, 2000) and a recently submitted paper to Radiology (accepted
pending revision, July 2001).

We also analyzed the contributions of age and computer-extracted
mammographic features in the prediction of breast cancer risk. We assessed the
contribution of the computer-extracted features to risk prediction in terms of percent
increase in the prediction power (%) when age (the single most important risk factor for
breast cancer) was used alone and when the mammographic features were included. The
inclusion of the mammographic features increased the prediction power (r2) from 0.08
and 0.16 (age alone) to 0.17 and 0.32, yielding an increase of 113% an d 100% in 12 for
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predicting the risk as estimated from the Gail and Claus models. The substantial increase
in r? indicates the important contribution of these mammographic features in risk
prediction and the need to incorporate in predicting breast cancer risk. (Presented IWDM
2000)

Task 3. Evaluation methods

This task is planned for months 20-36. However, our plans include the following.

We are developing a model for aésessing breast structure and cancer risk. Thus,
correlation analysis will be used in evaluating the performance of the measures. Linear
correlation analysis will be performed to determine the correlation among the output of
the new model and the Gail risk model (or Claus model). We are using the combined
model based on the first two models (gene mutation vs. low-risk and with cancer vs.
without cancer) and evaluating the performance of the combined measures using the Gail
model. '

Another task for the coming year will be to evaluate the texture measures in their
ability to predict the onset of breast cancer (over time). Based on the cases collected
during the first 2.5 years of the study, a nested case-control study design will be
implemented. As our criteria are that the mammograms should have been obtained after
1989, there is potential for collecting images from eight years ago (so can assume 5 to 8
year follow-up). In a nested case-control database, the cases will correspond to women
who will have developed cancer and the control will correspond to women who will have
stayed cancer free during the period. We will calculate the clinical markers (e.g., Gail)
and the mammographic features of the initial examination prior to the 5 to 8 year follow-
up. Multivariate analysis will be used to examine the relationship between the new
model and risk of breast cancer while controlling for other risk factors such as age at
menarche and parity. A proportional-hazards regression model will be used to calculate
the relative risk for each radiographic marker.

KEY RESEARCH ACCOMPLISHMENTS:

e Further increase in our database of high and low risk cases, especially those with
positive BRCA1/BRCA2 testing.

o Further verification of our texture features for characterizing the breast parenchyma
using three different approaches -- all yielding the same result



¢ Preliminary study looking at the contribution of age and mammographic features to
breast cancer risk prediction.

REPORTABLE OUTCOMES:

1. Analysis of the relative contributions of mammographic features and age to breast
cancer risk prediction. Zhimin Huo, Maryellen L. Giger and Olufunmilayo I. Olopade,
Presentation at International Workshop on Digital Mammography 2000 (Toronto,
Canada)

2. Computerized analysis of mammographic paftems of women with and without
breast cancer. Zhimin Huo, Maryellen L. Giger and Olufunmilayo I. Olopade,

Presentation at CARS 2000 (San Fransico, CA)

3. Huo Z, Giger ML, Wolverton DE, Zhong W, Cummings S, Olopade OI:
Computerized analysis of mammographic parenchymal patterns for breast cancer risk
assessment: Feature selection. Journal article Medical Physics 27:4-12, 2000.

4, Huo Z, Giger ML, Zhong W, Nishikawa, RE, Wolverton DE, Olopade OI:
"Mammographic parenchymal patterns as predictors for breast cancer risk".
Presentation at 86" Scientific Assembly and Annual Meeting of Radiological Society of
North America, Chicago, Illinois, 2000.

CONCLUSIONS:

To date, we have shown that computer-extracted features of mammographic
parenchymal patterns can be used in the prediction of breast cancer risk. This has been
demonstrated (on the developing database) using three approaches: (1) correlation with
clinical models of Gail and Claus, (2) separation between women at low risk and those
with a positive gene testing result, and (3) separation between women at low risk and
those that have breast cancer. In addition, we have shown, in a preliminary study, that
the inclusion of the mammographic features with age increase the predictive power over
the use of age alone in the prediction of breast cancer risk.




Computerized analysis of mammographic parenchymal patterns for breast

cancer risk assessment: Feature selection

Zhimin Huo,® Maryellen L. Giger,® Dulcy E. Wolverton, and Weiming Zhong
Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology,
5841 South Maryland Avenue, The University of Chicago, Chicago, lllinois 60637

Shelly Cumming and Olufunmilayo I. Olopade
Department of Hematology and Oncology, The University of Chicago, Chicago, Hlinois 60637

(Received 21 December 1998; accepted for publication 7 October 1999)

Our purpose in this study was to identify computer-extracted, mammographic parenchymal patterns
that are associated with breast cancer risk. We extracted 14 features from the central breast region
on digitized mammograms to characterize the mammographic parenchymal patterns of women at
different risk levels. Two different approaches ware employed to relate these mammographic fea-
tures to breast cancer risk. In one approach, the features were used to distinguish mammographic
patterns seen in low-risk women from those who inherited a mutated form of the BRCA1/BRCA2
gene, which confers a very high risk of developing breast cancer. In another approach, the features
were related to risk as determined from existing clinical models (Gail and Claus models), which use
well-known epidemiological factors such as a woman’s age, her family history of breast cancer,
reproductive history, etc. Stepwise linear discriminant analysis was employed to identify features
that were useful in differentiating between ‘‘low-risk”> women and BRCA1/BRCA2-mutation car-
riers. Stepwise linear regression analysis was employed to identify useful features in. predicting the
risk, as estimated from the Gail and Claus models. Similar computer-extracted mammographic
features were identified in the two approaches. Results show that women at high risk tend to have
dense breasts and their mammographic patterns tend to be coarse and low in contrast. © 2000
American Association of Physicists in Medicine. [S0094-2405(00)01001-4]

Key words: breast cancer risk, gene mutation, mammographic parenchyma, computerized

classification, linear discriminant analysis, linear regression analysis

I. INTRODUCTION

"Breast cancer is the most frequently diagnosed malignancy
after skin cancer among women in the United States.! It is
estimated that approximately one in eight women will be
diagnosed with breast cancer in her lifetime.! Studies show
that screening mammography is the best imaging technique
for the early detection of breast cancer,> which reduces
breast cancer deaths by as much as 30%.4° Annual screen-
ing mammography has been recommended by the American
Cancer Society for all women over the age of 40.!

With the increasing awareness of breast cancer risk and
the benefit of screening mammography, more women in all
risk categories are seeking information regarding their indi-
vidual risk of developing breast cancer. Identification and
close surveillance of women who are at high risk of devel-
oping breast cancer may provide an opportunity for early
cancer detection.

Large-scale epidemiological studies have shown that, in
addition to age, there are many factors associated with breast
cancer risk, although the basic mechanisms underlying the
association between breast cancer and these risk factors are
not well understood. These include risk factors such as a
woman’s family history of breast cancer, her reproductive
history, and her history of previous breast biopsies. Clinical
models, such as the Gail et al. model!® and the Claus et al.
model," have been developed to estimate an individual’s
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risk of developing breast cancer using these factors. Esti-
mates of risk from these models have been used by clinicians
for counseling women who are seeking information regard-
ing their individual breast cancer risk."*

Recent molecular studies demonstrate that breast cancer
may be inherited.!*~16 Genes that are responsible for inher-
ited breast cancer, including the BRCAL1 (breast cancer 1)
and BRCA?2 (breast cancer 2) genes, have been identified."”
Although hereditary breast cancers account for only 5%-—
10% of all breast cancers, ®' it is estimated that women who
inherit a mutated form of the BRCA1 or BRCA2 gene have
as much as a 56%—87% risk of developing breast cancer by
age 70 years,”*?! which is about 8 times higher than the
lifetime risk for the general population. DNA tests for these
genes offer a way to identify women who have hereditary
breast cancer.

The association of breast cancer risk with mammographic
parenchymal patterns has been investigated in the past. In-
creased mammographic density has been found to be associ-
ated with an increased risk of breast cancer. It has been
shown in several studies that women with increased mam-
mographic parenchymal density are at a four- to six-fold
higher risk over women with primarily fatty breasts.?>2 At
present, the reason for this increased risk is unclear. One
possibility is that increased density reflects a larger amount
of tissue at risk for developing breast cancer. Since most

© 2000 Am. Assoc. Phys. Med. 4
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breast cancers develop from the epithelial cells that line the
ducts of the breast, having more of this tissue as reflected by
increased mammographic density may increase one’s
chances of developing breast cancer.

Wolfe first described a possible association between the
risk for breast cancer and different mammographic patterns
in 1976.% Since then, many investigators have used the
Wolfe patterns to classify the mammographic appearance of
breast parenchyma for risk assessment.?® Others have used
qualitative or quantitative estimates of the proportion of the
breast area (percent dense) that mammographically appears
dense to assess the associated breast cancer risk. Although
considerable variations were observed in reported individual
results based on visual assessment,2% most studies showed
that women with dense breasts have an increased risk of
breast cancer relative to those with fatty breasts.

While visual assessment of mammographic patterns has
remained controversial due to the subjective nature of human
assessment,”’ computer vision methods can yield objective
measures of breast density patterns. Computerized classifica-
tion of mammographic images has been investigated by vari-
ous investigators, including Magnin eral,?® Caldwell
et al.,” and Tahoces et al.,”® who used computer-extracted
texture measures to classify mammographic patterns into the
four categories of Wolfe patterns, and Taylor ef al.3! and
Byng et al.,’**® who used computer-extracted texture fea-
tures to quantify the percent dense of the breast. Byng
et al>® first investigated the association of computer-
extracted texture measures (i.e., skewness and fractal dimen-
sion) with breast cancer risk. They showed that increased
mammographic density was associated with an increased
relative risk of 2 to 4.

Our objective in this study is to identify computer-
extracted mammographic features on digitized mammograms
that are associated with breast cancer risk.>* A total of 14
mammographic features from the central breast region were
extracted. In general, breast parenchymal can be described
by the amount of dense regions and by the heterogeneity/
homogeneity of the patterns in the dense portions of the
breast. We based our computer-extracted features on those
that are already known to be associated with breast cancer
risk from visual assessment.>*% Some of these individual
computer-extracted features quantify percent dense while
others characterize the heterogeneity. We believe that a com-
bination of multiple features will perform better than a single
feature in characterizing mammographic patterns, and thus
may help in assessing breast cancer risk. These features were
related to predictors of breast cancer risk using two different
approaches: (1) the classification of mammographic patterns
of low-risk women and BRCA1/BRCA2 gene-mutation car-
riers; and (2) the prediction of risk as estimated from the
Gail model and the Claus model. The useful features were
identified via the two different approaches. The characteristic
mammographic patterns of women at high risk and at low
risk were identified in terms of computer-extracted features.

Medical Physics, Vol. 27, No. 1, January 2000

. MATERIALS AND METHODS
A. Database

Mammograms from 341 women were retrospectively col-
lected. Information regarding women’s reproductive histo-
ries, family histories of breast cancer, and histories of previ-
ous breast biopsies were collected to assess each individual’s
breast cancer risk using the Gail model and/or Claus
model.!*!! The information required by the Gail model in
the calculation of individual risk are (1) age, (2) age at me-
narche, (3) age at first full-term birth, (4) number of first-
degree relatives with breast cancer, and (5) number of previ-
ous breast biopsies. The information required by the Claus
model in the calculation of individual risk are (1) age and (2)
the number of first-degree and second-degree relatives with
breast cancer and their ages of onset. Based on the calculated
risk, 341 women were categorized into low-, moderate-, and
high-risk groups. In addition, mammograms were collected
from 15 women with BRCA1/BRCA2 mutation.

Mammograms from 285 of the women were obtained
from the screening mammography program in the Depart-
ment of Radiology (May 1996 to December 1996) at the
University of Chicago Hospitals. These women completed
questionnaires yielding information on their medical history
and information required in the Gail or the Claus model.
Their Gail and Claus risk estimates were calculated at the
University of Chicago Cancer Risk Clinic (UCCRC), where
genetic counseling is also performed. To be considered low
risk in the study, women had to have no family history (no
Claus risk) of breast cancer and the risk of developing breast
cancer as estimated from the Gail model had to be less than
10%. Among the 285 women, 143 of them were considered
to be low risk based on these criteria.

The 15 BRCA1/BRCA2 mutation carriers and an addi-
tional 56 women who were at high risk were recruited from
the UCCRC. Mammograms previously obtained were re-
trieved and digitized for all these women. Information re-
garding their reproductive histories, family histories of breast
cancer, histories of previous breast biopsies, etc. were col-
lected to analyze their risk of developing breast cancer at the
time of counseling. The mutation carriers were tested at a
CLIA-approved laboratory under an IRB-approved protocol.
Among the 15 BRCA1/BRCA2-mutation carriers, four had
no cancer, two were diagnosed with ovarian cancer, and nine
were diagnosed with breast cancer. For those with a previous
diagnosis of breast cancer, mammograms obtained a year
prior to the diagnosis were analyzed. These mammograms
were reviewed by an expert mammographer and deemed
void of any detectable abnormalities.

Since two analyses were performed in our study, the da-
tabase (mammograms from the 356 women) were grouped as
follows. Mammograms of the 143 low-risk women and the
15 mutation carriers were used in the classification analysis.
Mammograms of the 341 women, excluding the 15 BRCA1/
BRCA2-mutation carriers, were used in the correlation
analysis. The BRCA1/BRCA2-mutation carriers were not in-
cluded in the correlation study, because neither the Gail
model nor the Claus model is accurate in predicting risk for
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FIG. 1. The overall computerized scheme for breast cancer risk assessment.
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women who are BRCA1/BRCA2 mutation carriers.!?

It should be noted that the BRCA1/BRCA2-mutation car-
riers tend to be younger than the ‘‘low-risk’’ cases. The age
of the BRCA1/BRCA2-mutation carriers ranged from 33 to
54 years, with a mean of 40.8 years and a median of 40
years. The age of the women in the low-risk group ranged
from 35 to 54 years, with a mean of 44.7 years and a median
of 45 years. To rule out possible bias due to the difference in
age distribution of the BRCA1/BRCA2-mutation carriers
and the “‘low-risk”” women, classification was also per-
formed on the 15 BRCA1/BRCA2 mutation carriers and 30
“low-risk’’ women who were randomly selected and age
matched with the 15 BRCAI/BRCA2-mutation carriers at 5
year intervals. The two-to-one ratio of the number of low-
risk women to that of the BRCA1/BRCA2-mutation carriers
was determined, based on the number of age-matched cases
available in the low-risk group.

B. Computerized analysis of parenchymal patterns on
digitized mammograms

Figure 1 schematically outlines the computerized methods
by which we investigated mammographic parenchymal pat-
terns that are associated with breast cancer risk. Mammo-
grams were digitized using a Konica laser scanner (LD 4500;
Konica Medical, Wayne, NJ) at 0.1 mm pixel size and 10-bit
gray-level scale. After digitization, regions-of-interest
(ROIs), 256 pixels by 256 pixels in size, were manually se-
lected from the central breast region (immediately behind the
nipple). Figure 2 illustrates an example of a ROI selected
from a digitized mammogram. The small ROI size (256 pix-
els by 256 pixels) was chosen in order to include small-sized
breasts. ROIs selected from the central breast region behind
the nipple were used for this study, because they usually
include the most dense parts of the breast. It should be noted
that in this study, a constant ROI size was used for all breast
images regardless of breast size. ROIs were selected such
that regions along the skin line that contains subcutaneous fat
were not included.

Medical Physics, Vol. 27, No. 1, January 2000

FiG. 2. Digitized mammograms (cranial-caudal view) and a selected ROL

1. Computer-extracted features

A total of 14 features were extracted from each of the
selected ROIs to quantitatively characterize the mammo-
graphic parenchymal patterns. These features are grouped
into (i) features based on the absolute values of the gray
levels, (ii) features based on gray-level histogram analysis,
(iii) features based on the spatial relationship among gray
levels within the ROI, and (iv) features based on Fourier
analysis. ’

a. Features based on the absolute value of the gray
levels. Features based on the absolute gray level values
(features 1-7 below) include the maximum, the minimum,
the average gray level, and various gray-level thresholds that
yield 5%, 30%, 70%, and 95% of the area under the gray-
level histogram of a ROI, as shown in Fig. 3. Figure 3 shows
gray-level histograms of (a) a dense ROI, (b) a mixed ROI,
and (c) a fatty ROL Radiographically, the breast consists
primarily of two types of tissue: fibroglandular tissue and fat.
Regions of brightness in mammography associated with fib-
roglandular tissue are referred to as mammographic density.
Features 17 are used as a means to quantify indirectly the
brightness of the selected region, thus yielding information
regarding the denseness of the region.

(1) MAX: Maximum gray level of the ROL.

(2) MIN: Minimum gray level of the ROL

(3) AVG: Average gray level of the ROI.

(4) 5% threshold: Gray level yielding 5% of the area
under the histogram of the ROL

(5) 30% threshold: Gray level yielding 30% of the area
under the histogram of the ROL

(6) 70% threshold: Gray level yielding 70% of the area
under the histogram of the ROI.

(7) 95% threshold: Gray level yielding 95% of the area
under the histogram of the ROL

b. Features based on gray-level histogram analysis. A

dense ROI tends to have more pixels with high gray-level
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FiG. 3. Gray-level histograms generated from (a) a dense ROI, (b) a mixed
RO, and (c) a fatty ROL

values (low optical density), yielding a gray-level histogram
skewed to the left, as shown in Fig. 3(a). A fatty ROI tends
to have more pixels with low gray-level values (high optical
density), yielding a gray-level histogram skewed to the right,
as shown in Fig. 3(c). Features such as skewness and balance
(defined below) of a histogram relative to the mean can be
used to quantify the ratio of pixels with high gray-level val-
ues to those with low gray-level values relative to the mean,
thereby approximating the local tissue composition (fibro-
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TABLE 1. List of the feature values obtained from the histograms (shown in
Fig. 3) for a dense, a mixed, and a fatty ROIL

The average values of the features

A dense A mixed A fatty
Features ROI ROI ROI

Features based on the absolute value of the gray value
MAX (gray level) 887 797 718
MIN (gray level) 705 555 473
AVG (gray level) 820 662 554
5% threshold (gray level) - 765 597 507
95% threshold (gray level) 850 725 643
30% threshold (gray level) 814 639 533
70% threshold (gray level) 833 685 562
Features based on gray-level histogram analysis
Balancel 0.55 0.97 1.70
Balance2 217 1.00 0.38
Skewness ~1.39 0.03 1.28 -

glandular tissue versus fat). As shown in Table I, a dense
ROI should yield a negative value of skewness, a value less
than one for balancel and a value greater than one for bal-
ance2, whereas a fatty ROI should yield a positive value of
skewness, a value greater than one for balancel and a value
less than one for balance2. A mixed ROI (half fatty and half
dense) should yield a value close to zero for skewness, a
value close to one for balancel, and balance2. The skewness
measure has been studied by Byng et al.?>* to evaluate per-
cent mammographic density in the breast. The balancel mea-
sure has been studied by Tahoces er al.* to classify mam-
mographic patterns into Wolfe patterns. We investigated two
balance measures (i.e., balancel and balance2) at different
thresholds of the gray-level histogram to quantify the bal-
ance of the histogram.

(8) Balancel: (95% threshold-AVG)/(AVG-5% thresh-

old).¥
©) Bal)anceZ: (70% threshold-AVG)/(AVG-30% thresh-
old).
(10) Skewness: m3/m3?, where
Gy
m= 2) n(i—i)*IN,
=
Gy Gy
N=2 n;, i=2 ni,
i=o0 i=0

and n; is the number of occurrences of gray-level
value i. G, is the highest gray-level value in the
ROL*®
c. Features based on spatial relationship among gray lev-
els. Two features (coarseness and contrast) based on the
spatial relationship among gray levels were investigated to
characterize the texture patterns in the ROI. Coarseness and
contrast were first proposed by Amadasun er al.3® and have
been used to characterize Wolfe patterns by Tahoces ez al.*
The mathematical definitions of the two texture features are
given below. The coarseness of a texture is defined by the
amount of local variation in gray level. The contrast of a
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texture is defined by the amount of differences among all

gray levels in the ROI and the amount of local variation in

the gray level presented in the ROI Notice that the contrast
measure is determined by two terms: the gray-level differ-
ences in a ROI weighted by the amount of local variation.
Thus, ROIs that have similar gray-level differences may
have different contrast depending on the local variation in
the ROIs. Conversely, ROIs that have the same amount of
local variation may have different contrast depending on the
gray-level differences in the ROIs.

(11) Coarseness: local uniformity,*

Gh “1 .
cos=[2 p,.s(i)J . Y
. I .

(12) Contrast: local contrast,>

A 1 G, Gy ) 1 Gy
C0N=,:Wi§0j2(’17ipi(l_l) J[H_ZI—ZO s(’)J’

where N is the total number of different gray levels present
in the ROI, G, is the highest gray-level value in the ROI, Di
is the probability of occurrence of gray-level value i, N is the
width of the ROI, 4 is the neighborhood size (half of the
operating kemel size), n=N—2d, and the ith entry of s is
given by

2 li-Ay,

0, otherwise,

for ie{N}, if N;#0,

S(i)=

in which {N;} is the set of pixels having gray level i,
1] 4 4 .
Ai=m—= 2 2 flx+p.y+g)
w 1p=—d p=—d

(p.q)#(0,0) to exclude(x,y),

W=(2d+1)* (d=1).

d. Features based on Fourier transform analysis. The
texture properties in each ROI were also analyzed from the
two-dimensional Fourier transform. Background-trend cor-
rection was performed within the ROI prior to the applica-
tion of the Fourier transform in order to reduce the contribu-
tion of variation from the gross anatomy of the breast
background (low-frequency component).>® The root-mean-
square (RMS) variation and first moment of power spectrum
(FMP) from the Fourier transform, as defined below,?” were
calculated to quantify the magnitude and spatial frequency
content of the fine underlying texture in the ROI after the
background trend correction. The RMS variation and the first
moment of power spectrum have been investigated by Kat-
suragawa et al.> to analyze interstitial disease in chest radio-
graphs, by Tahoces eral*® to classify Wolfe patterns in
mammograms and by Caligiuri er al.*® to characterize bone
textures in lateral spine radiographs.

(13) RMS variation: root mean square of power spectrum,
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RMS= \/ff]F(u,v)lzdudv.

(14) FMP: first moment of power spectrum,

FMP=f f WIF(u,v)lzdudv/
fle(u,v)lzdudv,

where F(u,v) is the Fourier transform of the background
corrected ROL

2. Selection of computer-extracted mammographic
features

a. Classification of BRCA1/BRCA2-mutation carriers and
cases at low risk. We examined the computer-extracted fea-
tures of the 15 BRCA1/BRCA2-mutation carriers and 143
““low-risk’” women as one approach for relating mammo-
graphic features to breast cancer risk. In this approach, the
ability of each individual computer-extracted feature was
first evaluated using receiver operating characteristic (ROC)
methodology®® in the task of distinguishing between
BRCA1/BRCA2-mutation carriers and the low-risk women.
In the ROC analysis, the individual features were used as the
decision variables. The area under the ROC curve (A,) was
used as an index to indicate the ability of the individual
features in distinguishing between the 15 BRCA1/BRCA2-
mutation carriers and the 143 ‘‘low-risk’” women.

Next, stepwise linear discriminant analysis*" was em-
ployed to select useful features from the 14 computer-
extracted features. The stepwise linear discriminant analysis
was accomplished in two steps. First, a stepwise feature se-
lection was performed to identify useful features. Second,
the selected features were used to determine the coefficient
of each feature variable in the discriminant function to
achieve maximum separation between the two groups. The
discriminant function is formulated by a linear combination
of the feature variables (the computer-extracted features).
The criterion used to choose the best features in the stepwise
procedure is to minimize the ratio of the within-group sum of
squares to the total sum of the squares of the distribution of
discriminant scores (Wilks’ lambda). A detailed discussion
of the underlying statistical theory for the stepwise procedure
using the Wilks’ lambda criterion is given in the literature.4!
The ability of the linear discriminant function, which merged
the selected features, in distinguishing between the mutation
carriers and the ‘‘low-risk’” women, was also evaluated us-
ing ROC analysis. The discriminant score of each case from
the linear discriminant function was used as the decision
variable in the ROC analysis.

b. Correlation of mammographic features with risks as
estimated from the Gail and the Claus models. In order to
relate mammographic features to breast cancer risk, we em-
ployed linear regression analysis*? to merge computer-
extracted features along with age into a regression function
to predict risk, as estimated from either the Gail model or the



9 Huo et al.: Computerized analysis of mammographic parenchymal patterns . 9

TasLE II. Performance of 14 computer-extracted features in differentiating between the 15 BRCA1/BRCA2-
mutation carriers and the ““low-risk” cases in the entire database and the age-matched group in terms of 4, .

Avg. value Avg. value A, ' A,
Features (mutation) (low risk) (entire group) (age matched)

Features based on the absolute value of the gray value
MAX (gray level) 838 783 0.68+0.06 0.69+0.08
MIN (gray level) 561 517 0.59+0.08 0.53%0.09
AVG (gray level) 729 641 0.76£0.06 0.71%0.08
5% threshold (gray level) 578 570 0.74+0.06 0.69+0.08
95% threshold (gray level) 794 i\ 0.75+0.06 0.71+0.08
30% threshold (gray level) 624 618 0.76+0.06 0.73+0.07
70% threshold (gray level) 755 663 0.75+0.06 0.72+0.08
Features based on gray-level histogrim analysis
Balancel 0.90 1.09 0.70+0.05 0.73£0.07
Balance2 133 0.84 0.75+0.05 0.80+0.06
Skewness © —0.46 0.13 0.82+0.04 0.87+0.05
Features based on spatial relationship among gray levels
Coarseness 0.000 65 0.000 48 0.72+0.06 0.73%0.07
Contrast 0.00033 0.00043 0.73£0.06 0.74£0.07
Features based on Fourier analysis
FMP (cycles/mm) 7.09 7.10 0.74+0.07 0.69+0.08
Rms variation 24.81 20.21 0.70x0.07 0.63+0.08
Average A, of the 14 features 0.73£0.05 0.72+0.08

Claus model. Both the lifetime risk (the risk of developing
breast cancer up to age 70) and the 10 year risk (the risk of
developing breast cancer in the next 10 years), as estimated
from the models, were used as risk indices in the regression
analysis.

The objective of regression analysis is to develop an
equation that ‘“fits’’ to observed variables, i.e., the risks es-
timated from the Gail or the Claus models. Stepwise regres-
sion was undertaken to identify from the 14 features, along
with age, the most useful features to be used as the predictors
in the regression function. The selected features were used to
determine the regression coefficients in the regression func-
tion to achieve the minimum square difference between the
observed variables and the estimated risk from the regression
function. The forward stepwise procedure in MINITAB*® was
employed to select features. The criterion used in the feature
selection is based on a measure (F*-statistic) of the reduc-
tion in the variation of the observations around the fitted
regression line. A detailed discussion of the underlying sta-
tistical theory can be found in the literature.** Four different
regression functions were obtained for the four different ob-
served variables, 10 year risk, and lifetime risk, as estimated
from the Gail and the Claus models.

lil. RESULTS
A. Mutation carriers and the low-risk women

Table II lists the A, values indicating individual perfor-
mance levels of the 14 features in the task of distinguishing
between the BRCA1/BRCA2-mutation carriers and the low-
risk cases in the entire group and the age-matched group. As
shown in Table II, the majority of the features yield an A,
value greater than 0.70 in distinguishing between the muta-
tion carriers. and the ‘“‘low-risk’’ cases in both the entire
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group and the age-matched group. No consistent increases or
decreases in the A, values of the 14 individual features were
observed when these features were applied to the age-
matched group. The average of the A, values from the 14
features obtained from the age-matched group (4,=0.72) is
similar to that obtained from the entire group (A,=0.73).
This suggests that the slight difference in age distribution
between the BRCAI/BRCA2-mutation carriers and the
“low-risk’* cases does not have a strong influence on the
performance of these individual features for this database.

The average values of individual features were calculated
for the mutation cases and the ‘‘low-risk”’ cases only (Table
I). The average value of the features based on gray level
indicate that the selected ROIs corresponding to the mutation
carriers yield higher gray-level values than those of the
‘“‘low-risk’’ cases; the average value of the skewness and
balance features show that the selected ROIs corresponding
to the mutation carriers tend to have more pixels with high
gray-level values relative to the pixels with low gray-level
values than those corresponding to the ““low-risk’’ cases.
The average value of the texture features indicate that mam-
mographic patterns of the mutation carriers tend to be
coarser in texture and lower in contrast than do those of the
“‘low-risk’’ cases. Figure 4 shows the distribution of the mu-
tation carriers and the “‘low-risk’’ cases in terms of selected
features: (a) RMS variation versus FMP and (b) coarseness
versus skewness.

Four features were selected from the stepwise feature se-
lection procedure for the classification of the mutation carri-
ers and the ‘‘low-risk’” cases. They are skewness, coarse-
ness, contrast, and balance2. The linear discriminant function
yielded an A, of 0.91 in classifying the 15 BRCA1/BRCA2-
mutation carriers and the 143 ‘‘low-risk’’ women.
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FiG. 4. Scattering plots of the BRCAI/BRCA2-mutation carriers and low-
risk cases in terms of (a) RMS variation and FMP and (b) coarseness and
skewness.

B. Correlation with the Gail and Claus models

Since the Claus model was designed to assess risk for
women who have a family history of breast cancer, only 143
cases (dataset A) out of 341 cases (excluding BRCAl/
BRCA2-mutation carriers) had such complete information,
as required by the Claus model. Three hundred and three
cases (dataset B) had complete information, as required by
the Gail model. Datasets A and B were used to establish

models in predicting the lifetime risk and ten-year risk indi-
ces, as estimated from the Claus model and the Gail model,
respectively. Dataset A and dataset B are overlapping subsets
from the entire database. Thus, the cases used in establishing
the linear regression functions to predict risk as estimated
from the Gail model and the Claus model were different.
Since it is an important risk factor, age was used along
with the mammographic features in the feature selection pro-
cedure. The stepwise feature selection procedure was per-
formed on each of the two datasets and the corresponding
models. A total of four sets of features were selected for the
two risk indices (i.e., the lifetime risk or the ten-year risk) as
estimated from the two models. The selected features along
with their correlation coefficients are listed in Table III. The
correlation coefficient (r) was calculated to evaluate the abil-

ity of the regression function using the selected features in

predicting risk as determined from the clinical models.

We observed the following phenomena from the linear
regression functions listed in Table III. With two different
risk indices (i.e., lifetime risk and ten-year risk) and different
subsets of the database, similar mammographic features
(with one feature different) were identified as important fea-
tures to predict risk, as estimated from the two clinical mod-
els. The association between the risk and a given feature, as
indicated by its borresponding correlation sign (the negative/
positive signs) in the regression functions, is the same for
each of the four computer-extracted features in the different
functions. The association between individual mammo-
graphic features and risk as estimated from the Gail or Claus
model indicates that women with dense breasts (the negative
sign for skewness), coarse (positive sign for coarseness) and
low contrast (negative sign for contrast) mammographic pat-
terns tend to have a high risk of developing breast cancer. It
should be noted that age was used in both the Gail and the
Claus models to predict risk. Results from Table III show
that the ten-year risk increases as age increases, while the
lifetime risk decreases as age increases.

TABLE III. The linear regression models generated for the lifetime risk and ten-year risk as estimated from (a)
the Claus model using 143 cases and (b) the Gail model using 303 cases. Note: skew, cos, rms, and con
correspond to the features of skewness, coarseness, rms variation, and contrast, respectively.

(a)

Correlation with the Claus model
Dataset A (143 cases)

Responses Models r p value
Lifetime risk 0.32—0.032 skew+0.003 rms—261.83 con—0.003 age 0.55 <0.00001
Ten year risk —0.09-0.013 skew+0.002 rms—100.52 con+0.004 age 0.57 <0.00001

)
Correlation with the Gail model
Data set B (303 cases)

Responses Features r - p value
Lifetime risk 0.22-0.014 skew+77.10 cos—97.4 1 con—0.002 age 0.41 <0.000 01
Ten-year risk —0.03-0.004 skew+34.51 cos—38.31 con+0.002 age 041 <0.00001
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IV. DISCUSSIONS

We investigated two different methods, i.e., a classifica-
tion method and a correlation method, to identify useful
mammographic features that are associated with predictors
of breast cancer risk. The selected mammographic features
were based on the analysis of the ROI selected from one of
the four routine mammographic views (MLO and CC views
of left and right breasts) obtained for each patient, namely,
the left CC view. We have studied whether the mammo-
graphic characteristics as described by the computer-
extracted features from a single image are representative and
sufficient for the estimation of breast cancer risk. In the
study, the correlation of each individual feature extracted
from the two projections (CC and MLO views) of the same
breast (left) and the correlation of each individual feature
extracted from the same projection (CC view) of the left
breast and the right breast were evaluated. In our database of
356 cases, the correlation coefficients of the 14 features
ranged from 0.66 to 0.85 between images from CC and MLO
views of the left breast and from 0.61 to 0.78 between im-
ages from CC views of the left and right breasts. Byng ez al.
have studied the left-right symmetry and projection (MLO
vs CC view) symmetry of two computer-extracted texture
measures (skewness and fractal dimension).* In a database
of 30 cases, they found that the correlation coefficients for
the two measures ranged from 0.86 to 0.93. Results from
their study and ours indicate that a representative character-
ization of mammographic texture patterns can be obtained
from analyses of a single projection of one of the breasts.

We realize that the size of ROI used in our study is a
limitation since the ROI represents different percentages of
the breast area for women with different breast sizes. Incor-
poration of the breast size in the analysis is important. In the
future, we plan to vary the size of the ROI used for different
sizes of breasts. We did investigate the use of five ROIs of
the same size (256 pixels by 256 pixels) within the breast
region: one at the center of the breast and one on each corner
of the centered one. The centers of the four ROIs at the
comers vary from breast to breast, depending on the size of
the breast. The average of each individual computer-
extracted feature over the five ROIs, however, performed
similarly or poorer than that from the ROI behind the nipple.
Use of the entire breast area as the ROI is ideal for evaluat-
ing the percent density of breast. Studies by others3%3133
have used multiple ROIs to include more breast area in their
analyses. The results from our study may best assess the
texture of dense regions (as opposed to percent dense), which
usually occurs behind the nipple. A future investigation will
address this issue.

Prediction of the breast cancer risk is a rather difficult task
since it involves many factors. In the classification study,
BRCAI1/BRCA2 mutation is the only risk factor that was
considered. The problem with this approach is that a few
women in the ‘‘low-risk’> group may actually have the
BRCA1/BRCA2 gene mutation but are not aware of its pres-
ence. It is estimated that about 3 in 1000 women in the
United States today have inherited susceptibility to breast
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cancer.'! The likely prior probability that the women in our
““low-risk’” group would harbor BRCA1/BRCA2 mutations
is low enough because they had no family history of breast
cancer warranting genetic testing, and they were regarded as
low risk without having to perform genetic testing. In the
correlation study, differences in the results as shown in Table
I when using the two models should not be unexpected
since the two models were designed from two different
populations and use different risk factors.!®!! Further, the
Gail and the Claus models are based on selected risk
factors, ! though the risk factors used in the models are con-
sidered to be the major factors and they were intended to be
used to predict an individual’s overall risk. Other studies
indicated that increased mammographic density associates
with increased breast cancer risk that could not be explained
by other risk factors.”® Thus, in our study, it is not unex-
pected that our computer-extracted features are not strongly
correlated with the risks, as estimated from the models based
on selected risk factors.

Although the risk in this study was not calculated from
the true observations of breast cancer incidence for the stud-
ied population, results from our study agree well with the
findings by others,> who related two computer-extracted
texture features (skewness and fractal dimension) directly to
““true’”’ breast cancer risk (observed risk), and found that
both measures were useful in characterizing mammographic
density and in predicting risk. We found that the two ap-
proaches we employed are useful in identifying important
mammographic features, which were consistently selected in
both approaches. Results from both methods suggest that
women at high risk, i.e., BRCA1/BRCA2-mutation carriers
or non-mutation carriers, tend to have dense breasts and their
mammographic patterns tend to be coarse and of low con-
trast. In fact, the two methods served as a validation method
for each other in terms of feature selection. They can be used
potentially in the future as means to estimate risk associated
with breast cancer based on the analysis of mammograms
and integrated with other clinical models. To our knowledge,
it is the first time that computerized analyses are performed
to analyze mammographic patterns of BRCA1/BRCA2-
mutation carriers, and our results show that similar mammo-
graphic patterns may exist for the high-risk women in gen-
eral and for women who are BRCAI1/BRCA2-mutation
carriers, in particular, based on computerized analyses.

V. CONCLUSION

Useful computer-extracted mammographic features were
identified to be associated with breast cancer risk from two
different approaches. Similar mammographic characteristics
were found for high-risk women who are either mutation
carriers or nonmutation carriers. The performance of the
computer-extracted features suggest that women who are at
high risk (mutation carriers or no-mutation carriers) tend to
have dense breasts and their mammographic patterns tend to
be coarse and low in contrast.
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